Synthesis, characterization and bonding of fulvalene dimolybdenum(III) and ditungsten(III) cations with one thiolate bridging ligand. Crystal structure of $\left[\mathrm{Mo}_{2}\left(\mu-\eta^{5}: \eta^{5}-\mathrm{C}_{10} \mathrm{H}_{8}\right)\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right)\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{Re}_{2}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}(\mathrm{CO})_{6}\right]$

Maria J. Calhorda ${ }^{\text {b,c }}$, Maria A.A.F. de C.T. Carrondo ${ }^{\text {b,c }}$, Alberto R. Dias ${ }^{\text {a,c }}$, Vitor Fćlix ${ }^{\text {b,c }}$, Adelino M. Galvão ${ }^{\text {a,c }}$, M. Helena Garcia ${ }^{\text {a,d }}$, Pedro M. Matias ${ }^{\text {b,c }}$ and Maria J. Villa de Brito ${ }^{\text {a,d }}$
${ }^{a}$ Centro de Quimica Estrutural, Complexo I, IST, Av. Rovisco Pais, 1096 Lisboa Codex (Portugal)
${ }^{b}$ Centro de Tecnologia Química e Biológica, R. da Quinta Grande 6, 2780 Oeiras (Portugal)
${ }^{\text {c Instituto Superior Técnico, Av. Rovisco Pais, } 1096 \text { Lisboa Codex (Portugal) }}$
${ }^{d}$ Faculdade de Ciências da Universidade de Lisboa, Edifício C1, Campo Grande, 1700 Lisboa (Portugal)

(Received September 29, 1992)

Abstract

New bridged fulvalene ($\mathrm{Fv}=\mu-\eta^{5}: \eta^{5}-\mathrm{C}_{10} \mathrm{H}_{8}$) binuclear molybdenum(III) and tungsten(III) compounds were obtained from the reaction of $\left[\mathrm{M}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{2}\right](\mathrm{M}=\mathrm{Mo}$ or W$)$ with dirhenium decacarbonyl. The complex $\left[\mathrm{Mo}_{2} \mathrm{Fv}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right) \mathrm{Cp}_{2}\right]\left[\mathrm{Re}_{2}(\mu-\right.$ $\mathrm{SPh})_{3}(\mathrm{CO})_{6}$] was characterized by single crystal X-ray diffraction. The cation [$\left.\mathrm{Mo}_{2} \mathrm{Fv}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right) \mathrm{Cp}_{2}\right]^{+}$showed a relatively rigid [$\mathrm{Mo}_{2} \mathrm{FvCp}_{2}$] unit with an Mo-S-Mo angle of $83.88(7)^{\circ}, \mathrm{M}-\mathrm{S}$ distances $2.442(2)$ and $2.450(2) \AA$ and a Mo \cdots Mo distance of $3.256(1) \AA$. In the $\left[\mathrm{Re}_{2}(\mu-\mathrm{SPh})_{3}(\mathrm{CO})_{6}\right]^{-}$anion, each metal atom has an octahedral environment (three carbonyl and three thiolate groups) with the two octahedra sharing the face containing the sulphur donor atoms ($\mathrm{Re}-\mathrm{S}-\mathrm{Re}$ angles from $86.63(8)$ to $\left.86.83(8)^{\circ}\right)$. The Re \cdots Re distance of $3.457(1) \AA$ is long. Extended Hückel molecular orbital calculations were done in order to understand the nature of the metal-metal interaction in the cation and some related complexes. Although the Mo \cdots Mo distance is relatively long, there is a strong interaction between the two d^{3} metal atoms, assigned to a σ bond, which leads to diamagnetic behaviour (the anion with two $\mathrm{d}^{6} \mathrm{Re}^{\mathrm{I}}$ centres is also diamagnetic).

1. Introduction

Several heterobimetallic systems based on the metallaiigands $\left[\mathrm{MCp}_{2}(\mathrm{SR})_{2}\right] \quad\left(\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{M}=\mathrm{Mo}^{\mathrm{IV}}\right.$, W^{IV} or $\mathrm{Ti}^{\mathrm{IV}}, \mathrm{R}=$ alkyl or aryl) and containing a late transition metal have been reported [1-8]. Previous electrochemical studies of the molybdenum and tungsten thiolate precursors [9] revealed that some of their chemistry could be related to their redox properties. For instance, $\left[\mathrm{Fe}\left(\mathrm{Cp}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ can be used as an oxidizing agent to prepare a wide range of $\left[\mathrm{MCp}_{2}(\mathrm{SR}) \mathrm{L}\right]^{+}$ cations $\left(\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{P}(\mathrm{OPh})_{3}, \mathrm{CO}, \mathrm{NH}_{3}, \mathrm{NCCH}_{3}\right.$, dppe [10] and several p-benzonitrile derivatives) [11].

As part of our continuing interest in developing molybdenum and tungsten thiolate chemistry, we have

[^0]undertaken the study of thermal reactions with dirhenium decacarbonyl and found that new bridging fulvalene ($\mathrm{Fv}=\mu-\eta^{5}: \eta^{5}-\mathrm{C}_{10} \mathrm{H}_{8}$) binuclear molybdenum(III) and tungsten(III) derivatives were formed, probably following reductive coupling of the cyclopentadienyl rings.

Similar fulvalene complexes have been known for a number of years and the structures of a significant number have been determined [12]. In all of them, the fulvalene is twisted around the $\mathrm{C}-\mathrm{C}$ bond joining the two $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings, allowing a shortening of the distance between the two metal atoms. A single crystal X-ray structure determination of $\left[\mathrm{Mo}_{2} \mathrm{Fv}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right)\right.$ -$\left.\mathrm{Cp}_{2}\right]\left[\mathrm{Re}_{2}(\mu-\mathrm{SPh})_{3}(\mathrm{CO})_{6}\right]$ was performed to obtain structural data of this complex. Extended Hückel molecular orbital calculations [13] were done to assess the degree of metal-metal interaction, both in the cation and in the anion.

2. Results and discussion

2.1. Chemical studies

Reaction of the complexes $\left[\mathrm{MCp}_{2}\left(\mathrm{SC}_{6}, \mathrm{H}_{5}\right)_{2}\right](\mathrm{M}=$ Mo or W) and $\left[\mathrm{Re}_{2}(\mathrm{CO})_{111}\right]$ in the stoichometric ratio $2: 1$, in p-xylene at reflux temperature for several hours led to the formation of several products. A new compound was isolated in low yield and an X-ray analysis showed the presence of the novel cationic species [$\left.\mathrm{Mo}_{2} \mathrm{Fv}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right) \mathrm{Cp}_{2}\right]^{-}$(1). A homolngous lungsten cation, $\left[\mathrm{W}_{2} \mathrm{Fv}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right) \mathrm{Cp}_{2}\right]^{4}$ (2) was identified by comparison with the molybdenum one. The counter ion was, in both cases, the binuclear tholate triplybridged dirhenate(I) complex $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{CO}_{6}\right]\right.$ (3), also identitied by the structural analysis. Other organorhenium products were present in the mixture of products, and the X-ray analysis of one of the crystals isolated revealed a new momber of the family of tetranuclear cubane $\mathrm{M}_{4} \mathrm{~S}_{4}$ compounds. namely $\left[\mathrm{Re}_{4}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{4}\left(\mathrm{CO}_{12}\right][14]\right.$.

The relatively low yield (-50%) of the reaction product can be explained by the presence of thiolate decomposition products produced by the relatively high temperature ($\sim 139^{\circ} \mathrm{C}$) at which the reactions took place. Both new molybdenum and tungsten compounds, isolated in the solid state as yellow-brownish crystals, are soluble in dichloromethane and acetonitrile and are moderately stable under air and moisture. The reactions were monitored by 1 R spectroscopy. following the evolution of the carbonyl stretching vibration pattern (2100-1800 cm^{-1}) on liquid samples taken at regular intervals from the reaction mixture. The IR spectrum of the tungsten compound (KBr pellets) showed two very strong peaks centred at 2000 (sharp) and 1890 (broad) cm ' while in the case of the Mo ${ }^{111}$ compound three peaks, at 2000,1910 and $1870 \mathrm{~cm}^{-1}$. were observed. In addition, the spectra contain the characteristic peaks of cyclopentadienyl groups. The diamagnetic behaviour observed in the ${ }^{\prime} H$ NMR spectra is consistent with the presence of a formal $M^{\prime \prime}-M^{1 I I}$ bond in the $\mathrm{d}^{3}-\mathrm{d}^{3}$ cation, as well as with the formulation proposed for the dirhenate anion, as discussed later.

Many fulvalene complexes have been found as products of attempted syntheses of low-oxidation state early-transition metal motallocenes [15] and the formation of the bridging fulvalene ligand is thought 10 involve reductive coupling of two bridging $\eta^{\prime}: \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings $[12 \mathrm{~b}, 16]$. In fact, the dimer $\left[\mathrm{Mo}_{2}\left(\mu-\eta^{\prime}: \eta^{5}\right.\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right)\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{H}^{+}$, characterized by X-ray diffraction, is a precursor of several binuclear molybdenum derivatives, including the neutral fulvalene-bridged dimolybdenum (III) [Mo, (Fv)(Cp) (H), [17].

Assuming the reaction to oceur in a similar way the first step should include oxidative addition of one $\mathrm{C}-\mathrm{H}$ bond from the C_{p} ang to the metal, foming a metalhydride bond and a sigma-bound $\eta^{\prime}: \eta^{*}-\mathrm{C}_{4}$ ligand. However, no hydride ligand was observed in the cationic complexes studied in this rork. The structure of cation I (see below) showed only one bridging thiolate and a Mo-Mo distance in the accepted range for a metalmetal bond. The lack of any evidence for a molybdenum hydride in the IR and 'H NMR spectra, and in the X-ray erystallographic study. led us to attribute a formal oxidation state of $1 / 1$ to both metal atoms. resulting in a fomma! is electron count around cach.

The formation of the dinuclear complex \mid Re, $(\mu$ $\left.\left.\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{(}(\mathrm{CO})_{n}\right]$ as a counter ion suggests that [Re(CO$\left.)_{,} \mathrm{SR}\right]$ may be an intermediate after the cleavage of the metal-metal bond in ($\mathrm{Re},(\mathrm{CO})_{11}$. Aithough $\left[\mathrm{Re},(\mathrm{CO})_{10}\right.$] can lose irreversibly one clectron from the
 which will then form the intermediate mentioned above [18]. electrochemieal studies (sce below) show that this does not happen. The high temperature at which the reaction takes place faous thermally activated Re -Re bond cleavage.

The only rhenium tholate-bridged anionic anaIogues known previous to this work were $E t_{4} N\left[\mathrm{Re}_{2}(\mu-\right.$ $\left.\mathrm{SR})_{3}(\mathrm{CO})_{6}\right]\left(\mathrm{R}=\mathrm{Me}{ }^{4} \mathrm{Bu} . \mathrm{SPh}\right.$ or $\left.\mathrm{C}_{n} \mathrm{~F}_{5}\right)[19]$, obtained from the reaction of $\left[\mathrm{Re}_{3}(\mu \mathrm{Br})_{3}(\mathrm{CO})_{n}\right]$ with ${ }^{\mathrm{B}} \mathrm{Bu}_{3} \mathrm{SnSR}$ in refluxing methanol for 2 h . and the related $[\mathrm{Re},(\mu-$ mtb) $\left.(C O)_{1}\right]$. Which was ohtained by reaction of potassium or caesium monothiobenzoate with thenium pentacarbony bromide at $85^{\circ} \mathrm{C}$ in ethanol [20].

2.2. Electrochemical shadies

Cyclic voltammetric studies of $\left[\mathrm{MO}, \mathrm{Fv}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right)\right.$) $\left.\mathrm{Cp}_{2}\right]\left[\mathrm{Ro}_{2}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{CO}_{6}\right]\right.$ in acetonitrile solution. in the range +1.8 to -1.6 V showed only a very irreversible wave at a relatively high potential, $E_{\mathrm{p}:}=1.7 \mathrm{~V}$, which can be associated cither with the cation comples or with the anion counterpart.

In order to see whether the $\left[\mathrm{Re}_{2}(\mathrm{CO})_{\mathrm{it}}\right]^{\text {d }}$ radica $]$ cation electrochemically generated (in our experimental conditions. oxidation of $\left[\mathrm{Re}, ~(\mathrm{CO})_{111}\right]$ occurred at $E_{\mathrm{pa}}=1.3 \mathrm{~V}$) could initiate the reaction. the equivatent amount of $\left[\mathrm{MoCp}_{2}\left(\mathrm{SC}_{0} \mathrm{H}_{6}\right)_{2}\right]$ was introduced into the voltamnertic cell. No peak associated with our fulvalene compound ($E_{\mathrm{p}}=1.7 \mathrm{~V}$) was observed. even after stopping the cycle for a shon time at $t_{\mathrm{a}}=1.35 \mathrm{~V}$ (small amount of electrolysis).
2.3. X-Ray stmacture of $/ \mathrm{Mo}, \mathrm{Fr}\left(\mu-\mathrm{SC}_{\mathrm{n}} \mathrm{H}_{3}\right) \mathrm{Cp}_{2} / / \mathrm{Re}_{2}(\mu-$ $\mathrm{SC}_{0} \mathrm{H}_{3} \mathrm{H}_{2}(\mathrm{CO})_{n}$

The X-ray study has shown that the structure is formed by $\left[\mathrm{Mo}, \mathrm{Fv}\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{-}\right) \mathrm{Cp},\right]^{+}$complex cations

TABLE 1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Mo}_{2}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\eta^{5}: \eta^{5}-\mathrm{C}_{10} \mathrm{H}_{8}\right)(\mu-\mathrm{SPh})\right]^{+}$

Bond lengths			
S(4)-C(81)	$1.791(5)$		
C(61)-C(71)	$1.436(9)$		
C(61)-C(62)	$1.440(8)$	$C(71)-C(72)$	1.423(8)
$\mathrm{C}(62)-\mathrm{C}(63)$	$1.379(10)$	$\mathrm{C}(72)-\mathrm{C}(73)$	1.378(11)
C(63)-C(64)	$1.422(8)$	$C(73)-C(74)$	$1.422(9)$
C(64)-C(65)	1.404(10)	$C(74)-C(75)$	1.395(11)
C(61)-C(65)	$1.449(8)$	$\mathrm{C}(71)-\mathrm{C}(75)$	$1.431(8)$
Cp rings		Phenyl rings	
$\mathrm{C}-\mathrm{C}$ range	$1.375(9)$	$\mathrm{C}-\mathrm{C}$ range	$1.375(8)$
	1.426 (8)		$1.391(9)$
Bond angles			
Mo(1)-S(4)-Mo(2)	83.88(8)		
Mo(1) S(4) C(81)	121.1(2)	Mo(2) S(4)-C(81)	123.8(2)
C(61)-C(62)-C(63)	108.9(6)	$\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{C}(73)$	108.3(6)
C(62)-C(61)-C(65)	106.5(5)	$\mathrm{C}(72)-\mathrm{C}(71)-\mathrm{C}(75)$	108.1(6)
C(62)-C(63)-C(64)	108.3(6)	$\mathrm{C}(72)-\mathrm{C}(73)-\mathrm{C}(74)$	107.7(6)
C(63)-C(64)-C(65)	109.1(6)	$\mathrm{C}(73)-\mathrm{C}(74)-\mathrm{C}(75)$	109.6(7)
C(61)-C(65)-C(64)	107.0(6)	$C(71)-C(75)-C(74)$	106.2(6)
C(62)-C(61)-C(71)	125.7(5)	$\mathrm{C}(65)-\mathrm{C}(61)-\mathrm{C}(71)$	126.8(5)
$\mathrm{S}(4)-\mathrm{C}(81)-\mathrm{C}(82)$	120.1(4)	$\mathrm{S}(4)-\mathrm{C}(81)-\mathrm{C}(86)$	118.6(4)
Cp rings		Phenyl rings	
$\mathrm{C}-\mathrm{C}-\mathrm{C}$ range	105.5(9)	$\mathrm{C}-\mathrm{C}-\mathrm{C}$ range	$119.6(6)$
	110.2(7)		121.0(6)

and $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}(\mathrm{CO})_{6}\right]^{-}$complex anions. Selected bond lengths and bond angles are given in Tables 1 and 2. Molecular diagrams are shown for the cationic complex in Fig. 1 and for the anionic complex in Fig. 2.

2.3.1. Molecular structure of $\left[\mathrm{Mo}_{2} \mathrm{Fv}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right)\right.$ -

 $\left.C p_{2}\right]^{+}$Each Mo atom in the cation is coordinated to one Cp ring, to one $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ ring of the bridging fulvalene to the S atom of the bridging thiophenyl and to the other Mo atom. Each of the four rings is nearly planar, with a maximum deviation of $0.022(7) \AA$ at $C(74)$, one of the carbon atoms of the fulvalene.

The mean distance of the Mo atoms to the Cp rings is $1.970(1) \AA$, to the rings of the fulvatene, $1.946(3) \AA$, and the mean angle between the ring normals to one Cp and to one $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ ring is $136.8(4)^{\circ}$. These values fit well into the range usually reported for biscyclopentadienyl complexes [21]. Generally the planes defined by the ring normals and the equatorial plane in this family of complexes are nearly orthogonal. However, in the binuclear complex cation now reported, the relative positions of those planes for each molybdenum (where the equatorial plane means the $\mathrm{Mo}, \mathrm{Mo}, \mathrm{S}$ plane) are far from orthogonality, with deviations of 26.33(10) and $26.39(9)^{\circ}$, respectively.

The S atom of the thiolato bridges between the two Mo atoms, with Mo-S distances of $2.422(2)$ and 2.450 (2)

TABLE 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\operatorname{Re}_{2}(\mu-\mathrm{SPh})_{3}(\mathrm{CO})_{6}\right]^{-}$

Bond lengths			
Re(1)-S(1)	2.545(2)	Re(2)-S(1)	2.531(2)
Re(1)-S(2)	$2.510(1)$	$\mathrm{Re}(2)-\mathrm{S}(2)$	$2.529(2)$
$\mathrm{Re}(1)-\mathrm{S}(3)$	2.508(2)	$\mathrm{Re}(2)-\mathrm{S}(3)$	$2.522(1)$
Re(1)-C(4)	$1.916(6)$	$\mathrm{Re}(2)-\mathrm{C}(1)$	$1.923(7)$
$\mathrm{Re}(1)-\mathrm{C}(5)$	$1.896(6)$	$\mathrm{Re}(2)-\mathrm{C}(2)$	$1.916(5)$
Re(1)-C(6)	$1.912(5)$	$\mathrm{Re}(2)-\mathrm{C}(3)$	$1.910(6)$
S(1)-C(21)	$1.796(5)$	$\mathrm{S}(2)-\mathrm{C}(11)$	$1.783(5)$
$S(3)-C(31)$	$1.790(6)$		
Phenyl rings			
$\mathrm{C}-\mathrm{C}$ range	1.359(16)	$\mathrm{C}-\mathrm{O}$ range	$1.136(9)$
	$1.394(10)$		$1.153(7)$
Bond angles			
$\mathrm{Re}(1)-\mathrm{S}(1)-\mathrm{Re}(2)$	85.86(7)		
$\operatorname{Re}(1)-\mathrm{S}(2)-\operatorname{Re}(2)$	86.63 (8)	$\mathrm{Re}(1)-\mathrm{S}(3)-\mathrm{Re}(2)$	86.83(8)
S(1)-Re(1)-S(2)	$76.11(7)$	$S(1)-\operatorname{Re}(2)-S(2)$	76.04(7)
$S(1)-\operatorname{Re}(1)-S(3)$	80.70(7)	S(1)-Re(2)-S(3)	$80.71(7)$
$S(2)-\operatorname{Re}(1)-S(3)$	78.16 (8)	$S(2)-\operatorname{Re}(2)-S(3)$	$77.57(7)$
$S(1)-\mathrm{Re}(1)-\mathrm{C}(4)$	93.4(2)	$S(1)-\operatorname{Re}(2)-\mathrm{C}(1)$	92.0(2)
$S(2)-\mathrm{Re}(1)-\mathrm{C}(5)$	96.7(7)	S(2)-Re(2)-C(3)	100.9(2)
$S(2)-\operatorname{Re}(1)-\mathrm{C}(4)$	96.3 (2)	$S(2)-\operatorname{Re}(2)-\mathrm{C}(2)$	$96.7(2)$
$\mathrm{S}(3)-\mathrm{Re}(1)-\mathrm{C}(6)$	93.3(2)	$S(3)-\operatorname{Re}(2)-C(3)$	91.1(2)
$S(3)-\operatorname{Re}(1)-C(5)$	$92.9(2)$	$\mathrm{S}(3)-\mathrm{Re}(2)-\mathrm{C}(1)$	98.9(2)
$C(5)-\operatorname{Re}(1)-C(6)$	87.8(3)	$\mathrm{C}(2)-\mathrm{Re}(2)-\mathrm{C}(3)$	88.1(3)
$\mathrm{C}(4)-\mathrm{Re}(1)-\mathrm{C}(6)$	91.9(3)	$\mathrm{C}(1)-\mathrm{Re}(2)-\mathrm{C}(3)$	$90.7(3)$
$C(4)-\operatorname{Re}(1)-C(5)$	92.5(3)	$\mathrm{C}(1)-\mathrm{Re}(2)-\mathrm{C}(2)$	87.1(3)
$\mathrm{S}(3)-\mathrm{Re}(1)-\mathrm{C}(4)$	172.7(2)	$S(3)-\operatorname{Re}(2)-C(2)$	173.9(2)
$S(2)-\mathrm{Rc}(1)-\mathrm{C}(6)$	170.5(2)	$\mathrm{S}(2)-\mathrm{Re}(2)-\mathrm{C}(1)$	176.9(2)
$S(1)-\operatorname{Re}(1)-C(5)$	171.2(2)	$S(1)-\operatorname{Re}(2)-C(3)$	171.7(2)
$\mathrm{Re}(1)-\mathrm{S}(3)-\mathrm{C}(31)$	106.3(2)	$\mathrm{Re}(2)-\mathrm{S}(3)-\mathrm{C}(31)$	118.7(2)
$\mathrm{Re}(1)-\mathrm{S}(1)-\mathrm{C}(21)$	105.7(2)	$\mathrm{Re}(2)-\mathrm{S}(1)-\mathrm{C}(21)$	115.8(2)
$\mathrm{Re}(1)-\mathrm{S}(2)-\mathrm{C}(11)$	111.3(2)	$\operatorname{Re}(2)-\mathrm{S}(2)-\mathrm{C}(11)$	121.1(2)
$\mathrm{Re}-\mathrm{C}-\mathrm{O}$ range	174.6(5)	Re-S-C range	105.7(2)
	177.7(5)		121.1(2)
$\mathrm{S}-\mathrm{C}-\mathrm{C}$ range	117.2(5)	Phenyl rings	
	124.6(5)	$\mathrm{C}-\mathrm{C}-\mathrm{C}$ range	118.3(8)
			122.1(9)

Fig. 1. Molecular diagram of complex cation $\left[\mathrm{Mo}_{2} \mathrm{Fv}(\mu-\right.$ $\left.\left.\mathrm{SC}_{6} \mathrm{H}_{5}\right) \mathrm{Cp}_{2}\right]^{+}$showing the atom labelling scheme with 30% thermal ellipsoids.

Fig. 2. Molecular diagram of complex anion $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{CO}_{6}\right]\right.$ showing the atom labelling scheme with 30; thermal ellipsoids,
\AA and an angle Mo-S-Mo of $83.88(7)^{\circ}$. There are many examples of binuclear complexes with thiolato bridges [22]. The geometry of the M,S,M triangle depends on the existence of an $\mathrm{M} \cdots \mathrm{M}$ interaction, on the number of such triangles, i.e. the number of thiolato bridges, and on the steric constraints imposed by nearby bulky ligands. That triangle in the complex $\left.\left[\mathrm{Mo}_{2}(\mathrm{CO})_{4}\left\{\mu-\mathrm{S}_{\left(\mathrm{CH}_{2}\right)}\right)_{6}\right) \mathrm{Cp}_{2}\right] \quad[23] \quad\left(\mathrm{Mo} \cdots \mathrm{Mo}_{0}=3.212\right.$ $\AA, \mathrm{Mo}-\mathrm{S}=2.531 \AA$ and $\mathrm{Mo}-\mathrm{S}-\mathrm{M}$ angle 86.2°) is similar to that of the title complex. If. however, the M \cdots M interaction is stronger, then this distance is shorter and the Mo-S-Mo angles are more acute, whereas the Mo-S bonds do not change significantly. Complex $\left[\mathrm{Mo}_{2}(\mathrm{CO})_{2}\left(\mu-\mathrm{SMe}_{3} \mathrm{Cp}_{2}\right]^{+}\right.$[22b], with three thiolato bridges, is an example of this situation, with values of $2.785(2) \AA$ and $69.1(2)^{\circ}$, respectively. The opposite situation is observed in $\left[\mathrm{MO}_{2}(\mathrm{CO})_{4}(\mu-\mathrm{SPh})_{2} \mathrm{Cp},\right]$ [24], with two thiolato bridges and no interaction between the two Mo atoms and where those values are $3.940(2) \AA$ and $101.62(8)^{\circ}$, respectively.

A comparison of relevant bond distances and angles for complexes with two Mo atoms bridged by a fulvafene ligand is presented in Table 3 .

A comparable bending of this ligand. as measured by the dihedral angle formed by the planes of the $\mathrm{C}_{5} \mathrm{H}_{+}$rings, ω, is obsenved in all these complexes. Another parameter that indicates distortion on the fulvalene ligand is the displacement from perpendicularity between each of the ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$) rings and the plane containing both the Mo-Mo bond an the of $\mathrm{C}-\mathrm{C}$ bond, φ. The definition of these angles is shown in a.

This last angle is quite small in $\left[\mathrm{Mo}_{2} \mathrm{Fv}(\mu\right.$ $\left.\left.\mathrm{SC}_{6} \mathrm{H}_{5}\right) \mathrm{Cp}_{2}\right]^{+}\left(0.4(1)^{\circ}\right)$ and all the other complexes containing both fulvalene and two Cp rings, but significant in the other type of complex. [MoFv(CO) ${ }_{0}$ [12a] and $\left[\operatorname{MoFv}\left(\mathrm{CO}_{4}\left\{\mathrm{PPCH}_{3}\right)_{3}\right\}_{2}\right][25 \mathrm{c}]$ have angles of 21.1 and 24.2°. respectively.

A π-electron delocalization in the fulvalene ligand is apparent from the observed range, 1.378(11)-1.449(8) \AA, of the $\mathrm{C}-\mathrm{C}$ bond lengths in both $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings. and in the $C-C$ bond length between the rings, $1.436(9)$ \AA. This has been observed in many other complexes $[12 c, 26]$, where the fulvalene ligand is generally bent from planarity to allow a metal metal interaction. Drage and Volhardt [12a] suggested that the fulvalene

TABLE 3. Structural parameters for dinuclear complexes of molybdenum with bridging fulvalene

Complex	Mo-Mo(i)	$\mathrm{Mo}-\mathrm{Cp}(\AA){ }^{\text {a }}$	Mo-($\left.\eta^{5} \mathrm{C}_{5} \mathrm{H}_{4}\right)(\stackrel{A}{\mathrm{~A}})^{\prime}$	$\alpha{ }^{(1)}$	$\left.\omega)^{\circ}\right)^{\circ}$	Ref.
$\left[\mathrm{Mo} 2_{2} \mathrm{Fv}(\mu-\mathrm{SPh}) \mathrm{Cp}_{2}\right]$	$3.256(1)$	1.970)(1)	1.946(3)	$136.8(4)$	15.76)	This work
$\left[\mathrm{Mo}_{2} \mathrm{Fv}(\mu \mathrm{OH})\left(\mu \mathrm{HOCp} \mathrm{p}_{2}\right]^{+}\right.$	3.1533(2)	1.964	1.979	13.8 \%	$1 \times .1$	25a
$\left[\mathrm{Mo}_{2} \mathrm{Fv}(\mathrm{CO})_{6}\right]$	$3.371(1)$		1.991(1)		153	12 a
$\left[\mathrm{Mo}_{2}(\mathrm{MeFv})\left(\mathrm{H}_{2}\right)(\mathrm{MeCp})_{2}\right]$	$3.2623(5)$	1.957	1.927	146.5	20.2	256
$[\mathrm{Mo})_{2} \mathrm{Fv}\left(\mathrm{CO}_{4}\left(\mathrm{PMe}_{3}\right)_{2}\right]$	$3.22001)$		$2.002(1)$		270	25 c
$\left[\mathrm{Mo}_{2} \mathrm{Fv}\left(\mathrm{H}_{3}\right) \mathrm{Cp}_{2}\right]^{4}$	3.227	1.957	1.94	140.4	17.5	17
$\left[\mathrm{Mo} 2 \mathrm{Fv}\left(\mu-\mathrm{OMOO}_{3}\right) \mathrm{Cp}_{2}\right]$	3.076	1.994	1.947	130.6	19.3	30

[^1]is an electronic bridge between the two metals, even where no bond exists between them.

As mentioned earlier, the formal count of 18 electrons around each Mo atom, the absence of any electron density peak assignable to hydrides, the spectroscopic evidence, and the M-M distance of $3.256(1) \AA$ in the title cation, are consistent with the formation of a Mo-Mo single bond.

> 2.3.2. Molecular structure of $\left[\mathrm{Re}_{2}\left(\mu-S C_{6} H_{5}\right)_{3}-\right.$ $\left.(\mathrm{CO})_{6}\right]^{-}$

In the dinuclear anion, each rhenium atom is coordinated to three sulphur atoms of the thiophenyl bridges and to three carbon atoms of the terminal carbonyls in a distorted octahedral arrangement. The two octahedra share the face defined by three S atoms of the bridging ligands.

The $\mathrm{Re}-\mathrm{S}$ bonding distances range from 2.508(2) to $2.545(2) \AA$, the $\mathrm{Re}-\mathrm{C}$ distances from $1.896(6)$ to 1.916 (6) \AA, and the $\mathrm{Re}-\mathrm{S}-\mathrm{Re}$ bonding angles range from $86.63(8)$ to $86.83(8)^{\circ}$. $\left[\mathrm{Re}_{2}(\mu-\mathrm{mtb})_{3}(\mathrm{CO})_{6}\right]^{-}$is another binuclear anionic complex which differs from the anion described only in the bridging ligands, which are thiobenzyl groups instead of thiophenyl groups [20]. In this latter complex, there are two sets of $\mathrm{Re}-\mathrm{S}$ distances; one, shorter, and with a mean value of $2.540(5)$ \AA, is assumed to contain some π character, resulting from electron delocalization from the thiocarbonyl of the μ-mtb group. The other set, with a mean value of $2.545(6) \AA$ is comparable with the mean value $2.524(1)$ \AA determined in the present anion. The mean angle at the bridging sulphur atom, $84.8(2)^{\circ}$ is also similar to the equivalent value of $86.5(1)^{\circ}$ in the title anion.

Cotton and Ucko [27] quantified the distortion from an ideal bioctahedron. When the terminal ligands differ from the bridging ligands, some of the parameters derived can be correlated with $\mathrm{M} \cdots \mathrm{M}$ distances. The difference between β, the $\mathrm{M}-\mathrm{L}-\mathrm{M}$ angle ($\mathrm{M}=$ metal centre, $\mathrm{L}=$ bridging ligand) and the ideal value of 70.53° for two octahedra should be zero for ideal octahcdra, but greater than zero for complexes with non-interacting metal centres and long separations, and less than zero for complexes with attractive interactions between the metal centres. In complex $\left[\operatorname{Re}_{2}(\mu-\right.$ $\left.\left.\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}(\mathrm{CO})_{6}\right]^{-}$, this parameter has the values $15.10(8), 16.30(8)$ and $16.33(7)^{\circ}$, and the $\mathrm{Re} \cdots \operatorname{Re}$ distance is $3.457(1) \AA$; in complex $\left[\operatorname{Re}_{2}(\mu-\mathrm{mtb})_{3}\right.$ -$\left.(\mathrm{CO})_{6}\right]^{-}$, the equivalent value is $14.27(2)^{\circ}$ and the $\mathrm{Re} \cdots \mathrm{Re}$ distance is $3.404(2) \AA$. In another example with a bioctahedron as a central core, $\left[\mathrm{Mo}_{2}(\mathrm{NNPh})_{4}(\mu\right.$ $\left.\left.\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{5}\right]^{-}$[28], a similar situation is observed, with valucs of $\beta-70.53^{\circ}$ of $14.4(1), 16.2(1)$ and $17.9(1)^{\circ}$ for the Mo \cdots Mo distance of $3.528(1) \AA$. This analysis is

TABLE 4. Metal-metal distances (\AA) and overlap populations in [$\mathrm{Mo}_{2} \mathrm{FvCp}_{2}$] derivatives

Complex	Mo-Mo distance	Mo-Mo O.P.	Ref.
$\left[\mathrm{Mo}_{2} \mathrm{Fv}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right) \mathrm{Cp}_{2}\right]^{+\mathrm{a}}$	3.256	0.16	This
$\left[\mathrm{Mo}_{2} \mathrm{Fv}(\mu-\mathrm{HI})(\mu-\mathrm{OII}) \mathrm{Cp}_{2}\right]^{2+}$	3.053	0.06	25 a
$\left[\mathrm{Mo}_{2} \mathrm{Fv}(\mathrm{H})_{2} \mathrm{Cp}_{2}\right]^{+}$	3.362	0.20	25 b
$\left[\mathrm{Mo}_{2} \mathrm{Fv}(\mu-\mathrm{H})(\mathrm{H})_{2} \mathrm{Cp}_{2}\right]^{+}$	3.227	0.05	17
$\left[\mathrm{Mo}_{2} \mathrm{Fv}\left(\mu-\mathrm{OMoO} \mathrm{O}_{3}\right) \mathrm{Cp}_{2}\right]$	3.076	0.18	30

${ }^{a} \mathrm{SH}$ was used in the calculations.
consistent with the absence of an interaction between the metal centres on these complexes, and a formal 18 -electron count in each rhenium for the first two cases. However, there are many binuclear complexes with distorted bioctahedron central cores, but with short metal-metal distances, in the range 2.628-2.919 \AA, considered to be bonding interactions. The angles at the sulphur bridging ligands are all acute in these cases and consequently the $\beta-70.53^{\circ}$ values are negative or close to zero. An example of this type of complex is $\left[\operatorname{Re}_{2}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{7}(\mathrm{NNPh})_{2}\right]^{-}$with an $\operatorname{Re} \cdots \operatorname{Re}$ distance of $2.744(2) \AA$ and $\beta-70.53^{\circ}$ values of $-4.8(1)$, $0.3(1)$ and $0.3(1)^{\circ}$ [28].

2.4. Molecular orbital calculations

The structure of the dimolybdenum complex was discussed earlier and briefly compared with that of other fulvalene dimolybdenum complexes. One of the most interesting aspects in this small series of compounds is existence of a metal-metal bond. The MoMo distance in the five compounds having both a fulvalene and two Cp rings (Table 4) spans a range from around $3.0 \AA$ to $3.3 \AA$, the shortest one being observed in a formally $\mathrm{Mo}^{\mathrm{IV}}-\mathrm{Mo}^{\mathrm{IV}} \mathrm{d}^{2}-\mathrm{d}^{2}$ complex, $\left[\mathrm{Mo}_{2} \mathrm{Fv}(\mu-\mathrm{H})(\mu-\mathrm{OH}) \mathrm{Cp}_{2}\right]^{2+}$, in which no metal-metal bond is expected to occur: both molybdenum atoms have an 18 -electron count. In the remaining complexes there are formally $\mathrm{Mo}^{\text {III }}-\mathrm{Mo}^{\mathrm{III}} \mathrm{d}^{3}-\mathrm{d}^{3}$ species, with different types and numbers of other ligands attached to the main $\left[\mathrm{Mo}_{2} \mathrm{FvCp}_{2}\right]$ frame and the presence of Mo-Mo bonds has been postulated in some of them. In this class of complex, diamagnetic behaviour is not always associated with the presence of a metal-metal bond. In some cases, coupling through the fulvalene ligand was postulated to account for the magnetic properties [26,29]. Extended Hückel molecular orbital calculations [13] were done in order to understand the bonding in these complexes. A related problem that is also addressed concerns the aromaticity or amount of π-delocalization in the fulvalene rings.

In order to simplify the interpretation. the geometry of the $\left[\mathrm{Mo}_{2} \mathrm{FvCp}_{2}\right.$] frame was idealized to C_{2}, symmetry. This forces a zero torsion of the fulvalene and an eclipsed conformation for the two five-membered rings coordinated to the same Mo atom. Although the calculations show this torsion to be favoured (the optimized geometry of the $\left[\mathrm{Mo}_{2} \mathrm{Fv}(\mu-\mathrm{SH}) \mathrm{Cp}_{2}\right]^{+}$model is very close to that of the $\left[\mathrm{MO}_{2} \mathrm{Fv}\left(\mu-\mathrm{SC}_{0} \mathrm{H}_{5}\right) \mathrm{CP}_{2}\right]$ cation described above), as it is accompanied by a small lowering of energy, the qualitative mature of the results. is not changed. Ligands can then be added to this skeleton to build up the five complexes. logether with the appropriate charge. We show in Table 4 the metal-metal overlap populations, as a measure of the bond strengths, and the corresponding bond lengths. A positive value is found for all the complexes, although it is very small for the two $\mathrm{Mo}^{\text {IV }}$ compounds. [$\mathrm{M} 0_{2} \mathrm{Fv}$ -$\left.(\mu-\mathrm{H})(\mu-\mathrm{OH}) \mathrm{Cp}_{2}\right]^{2}$ and $\left[\mathrm{MO}_{2} \mathrm{Fv}(\mu-\mathrm{H})(\mathrm{H}), \mathrm{Cp}_{2}\right]$

Let us start by considering only the [Mo, FvCp,] fragment. Neutral fulvalene is aromatic (10 - eelectrons). while the dianion has 12π-electrons. They can be represented approximately as in \boldsymbol{b} and \boldsymbol{c}.

b

c

The neutral species looks like two butadiene units joined by an ethylene molecule and the X -ray structure of a bulky substituted stable fulvalene shows that there is indeed such an alternation of double and single bonds [31]. However. the dianion can be deseribed as two cyclopentadienyl anions joined by a longer $C-C$ bond. The calculated overlap populations (using only one $\mathrm{C}-\mathrm{C}$ distance in the model) refleet these trends. Populating the LUMO of the neutral species d does indeed lead to a longer central $C-C$ bond tantibonding character). This orbital can also be looked upon as the HOMO of a Cp anion.

d

The bonding of fulvalene to the two metals resembles the bonding of a cyclopentadienyl anion to a metal (twice), with three components involving donation of electrons from filled levels of the ligand into empty orbitals of the metal fragment. Back donation is negligible. This loss of electrons from a formal dianion leaves the fulvalene ligand in an intermediate situation between \mathbf{b} and \mathbf{c}, above. It is expected that there will
be less alternation of C - bond distances inside the rings than in free substituted fulvalene, but some should still occur. The same reasoning leads us to expect the inter-ring C-C bond to be longer in the complex. This model is consisten with the small fold observed, which implics only a small displacement from planarity, without much influence on the clectronic structure. On the other hand. the lat that coodinated fukalene behaves as two (pring, is reflected in the reactivity of some complexes. For instance, is is possible in transform reversibly cis-fulvalene (as seen in all the previous compounds) inte trass-lukatene complexes with minimal changes in the envirommen of the two metals, implying an eas rotation around the central $C-C$ bond $[29 \mathrm{~d}]$. A similar amalysis has been applied to the related complexes cis and trans-[Rh, FvCO), $\left(\mathrm{PPh}_{3}\right)$, $][3 \mathrm{D}]$. and the results are comparable.

Lef us now analse the metal metal hond in the model fragment [Mo, FvCp,] ${ }^{2}$, which will be decomposed in two Mot ${ }^{-}$- H_{4} Cp umits. The fronticr orbitats are similar to the three frontior orbitals of the MCp, fragment. $1: 4, b, 2 a,[33]$. They will each be occupied by three clectrons. The interaction between the antisymmetric \bar{T} orbitals results in one bonding and one antibonding orbital. whe the other four. all symmetric. give rise to four orbitals. The one with lowest energy has bonding character. whic the next is approximately mon-bonding. These interactions are sketched in a simplified form in Fig. 3 and the three lower levels are also shown.

The six electrons will then occupy two bonding levels (one r. one π) and one non-bonding level. The metal-metal bond can be described ats a double bond.

The situation changes when ligands are added to this basic fragment, In $\left.\mid \mathrm{Mo})_{2} \mathrm{Fv}(\mu-\mathrm{SH}) \mathrm{Cp}_{2}\right]^{\prime}$ (the C_{3} symmetry was kept in all calculations involving a bridg. ing L.H. L being an oxyeen or sulphur atom). The SH interacts with the two molybdenum atoms. donating elections to the two LUMO of the dimetal fragmem. The two HOMOs mix and only the bonding orbital (a, in Fig. 3) is left relatively unchanged. Two now S-Mo bonds are fomed and the Mo-Mo bond remains. This is schematically shown in Fig. 4.

The situation will be very similar for the $\mu-\mathrm{OMOO}_{3}$ derivative (see Table 4). In the dihydride complex. the two hydrides are not bridging. Their bonding to the metal does not affeet the Mo-Mo bond significantly, The two remaining complexes in Table + still possess some metal-metal bond character in our calculations. in spite of the molytdenum atoms having more ligands around them. The bonding molecular orbital (a, in Fig. 3) is involved in the metal-ligand bond formation, but still retains some of its initial metal-metal bonding character.

A complete optimization of the angles in the model complex (e) was attempted and the geometry corresponding to the lowest energy species was very close to the experimental one. The optimized structure has the following parameters (defined in \mathbf{e}, experimental values in parentheses): $\gamma=22.5(22), \quad \beta=121(118), \quad \alpha=$ 135.5(138), $\tau=150(140), \eta=8(8)^{\circ}$.

e

In $\left[\operatorname{Re}_{2}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}(\mathrm{CO})_{6}\right]^{-}$, the metals are formally $\mathrm{Re}^{\mathrm{I}}, \mathrm{d}^{6}$, and for this electron count an octahedral environment around each metal is strongly favoured. The observed bioctahedral geometry is thus the expected one, as found for the whole family. No metal orbitals are available for metal-metal bonds.

Fig. 3. Interaction diagram between the two molybdenum atoms in $\left[\mathrm{Mo}_{2} \mathrm{FvCp}_{2}\right]^{2+}$ and representation of the three HOMOs.

Fig. 4. Interaction diagram between $\left[\mathrm{Mo}_{2} \mathrm{FvCp}_{2}\right]^{2+}$ and $\mathrm{SC}_{6} \mathrm{H}_{5}^{-}$ showing the Mo-Mo bonding orbital.

3. Conclusions

The study of the cation in the new compound $\left[\mathrm{Mo}_{2} \mathrm{Fv}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right) \mathrm{Cp}_{2}\right]\left[\mathrm{Re}_{2}(\mu-\mathrm{SPh})_{3}(\mathrm{CO})_{6}\right]$ and its comparison with some analogues suggest that the basic $\left[\mathrm{Mo}_{2} \mathrm{FvCp}_{2}\right]_{\mathrm{o}}$ unit is relatively rigid. A Mo-Mo bond length of $4 \AA$ was proposed in an early paper as the best for the bis(fulvalene)dimolybdenum derivatives [34]. However, it seems from the larger number of structures now available, those described and others involving other metals such as titanium, niobium, zirconium [12b, c, 26, 29a-d, 35], that the preferred $\mathrm{M}-\mathrm{M}$ distance in fulvalene-biscyclopentadienyl dimetal complexes is shorter. Values range from $2.8 \AA$ to $3.6 \AA$, and there is no difficulty for the fulvalene to accommodate a small bending. As seen above in Table 4, the shortest distances may be found in complexes not supposed to have a metal-metal bond [25a], even though in those cases a weak metal-metal interaction was found in our calculations, while a bond between the two metals can be present when the distance is relatively long. A weak interaction between metal atoms may eventually also occur for other systems based on the same basic geometry and contribute to the diamagnetic behaviour exhibited in some cases.

4. Experimental details

All experiments were carried out under N_{2} by standard Sehlenk-tube techniques. IR spectra were measured on a Perkin-Elmer 457 spectrophotometer with KBr pellets or in solution using 0.1 mm NaCl spaced cells. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker CXP 300 spectrometer.

The solvents acetonitrile and dichloromethane were reagent grade materials, were dried over CaH_{2} (acetonitrile also over $\mathrm{P}_{2} \mathrm{O}_{5}$) and distilled before use under dinitrogen. Diethyl ether was refluxed over sodium wire and distilled before use. Starting materials $\left[\mathrm{MCp}_{2} \mathrm{H}_{2}\right]\left(\mathrm{M}=\mathrm{Mo}^{\mathrm{IV}}\right.$ or $\left.\mathrm{W}^{\mathrm{N}}\right)$ were prepared as described previously [36]. Dirhenium decacarbonyl was purchased from Aldrich and used without further purification.
4.1. Preparation of $/ \mathrm{Mo}_{2} \mathrm{Fr}\left(\mu-S \mathrm{C}_{1} \mathrm{H}_{5}\right) \mathrm{Cp}_{2} / / \mathrm{Re} \mathrm{N}_{2}\left(\mu-\mathrm{SC}_{8}\right.$ $\left.\mathrm{H}_{5}\right)_{3}(\mathrm{CO})_{6} 1$

A suspension of $445 \mathrm{mg}(-1 \mathrm{mmol})$ of $\left[\mathrm{MOCP}_{2}-\right.$ $\left.(\mathrm{SPh})_{2}\right]$ and $325 \mathrm{mg}(\sim 0.5 \mathrm{mmol})$ of $\mathrm{Re}_{2}(\mathrm{CO})_{11}$ in 30 ml of p-xylene (b.p. $-139^{\circ} \mathrm{C}$) was heated under reflux for 12 h . After cooling to room temperature, the mixture was filtered and the solvent removed under vacuum. The brown solid residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and recrystallized from diethyl ether.

IR spectrum: $v(\mathrm{C} \equiv \mathrm{O}) 2000,1910,1870 \mathrm{~cm}{ }^{1} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 5.33\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}, 10 \mathrm{H}\right) ; 5.65-6.10(\mathrm{~m}$, Fv, 8 H$) ; 7.32(\mathrm{~m})$ and $8.23(\mathrm{~m})\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5} .20 \mathrm{H}\right)$.
4.2. Preparation of $/ W_{2} F_{r}\left(\mu-S C_{0} H_{5}\right) C_{p}, / / R e_{2},\left(\mu-S C_{i}\right.$ $\left.\mathrm{H}_{5}\right)(\mathrm{CO})_{6} /$

The procedure described before was used, with 16 h of reflux time. IR: $\nu(\mathrm{C} \equiv \mathrm{O}) 2000,1900$ (broad) cm^{-1}. 'H NMR: $\left(\mathrm{CDCl}_{3}\right): \delta 5.65\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}, 10 \mathrm{H}\right) ; 5.69-6.07(\mathrm{~m}$, Fv, 8 H$) ; 7.58(\mathrm{~m})$ and $8.08(\mathrm{~m})\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5} .20 \mathrm{H}\right)$.

4.3. Electrochemical apparatus

The electrochemistry instrumentation consisted of a Princeton Applied Research model 173 potentiometer. model 175 voltage programmer, model 179 digital coulometer and an Omnigraphic $2000 \mathrm{X}-\mathrm{Y}$ recorder of Houston Instruments. Potentials were referred to a calomel electrode (SCE) containing a saturated solution of potassium chloride checked relative to a 0.10 M LiClO_{4} solution, for which the ferricinium/ferrocene potential was in agreement with the literature [37].

The working electrode was a $2-\mathrm{mm}$ piece of Pt wire. The secondary electrode was a Pt wire coil. The experiments were performed in a PAR polarographic cell at room temperature with solutions 1 mM in solute and 0.1 M in the supporting electrolyte, tetrabutyammonium hexafluorophosphate. Solutions were degassed
with dry dinitrogen before each experiment and a dinitrogen atmosphere was always maintained over the solution.

4.4. Crstal data

$\mathrm{C}_{50} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{MO}_{2} \mathrm{Re}_{2} \mathrm{~S}_{4} . M=1427.4$, triclinic, $P \overline{\mathrm{l}}, a=$ $11.555(4), b=14.274(4),(=14.808(5) \AA . a=93.37(2)$, $\beta=100.90(2), \gamma=98.09(2)^{\circ}, 1=2301(1) \AA^{3}, Z=2, D_{c}$ $-2.06 \mathrm{~g} \mathrm{~cm}^{-} \cdot \mu-($ MoKa $) 60.61 \mathrm{~cm}^{-1} \cdot F(000)=$ 1368.

4.5. Daia collection

X-Ray measurements were made on an Enraf-Nonius CAD-4 diffractometer with graphite monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71069 \mathrm{X})$. Unit cell and orientation matrix were obtamed by least squares refinement from 25 centred reflections with $13.0 \leqslant \theta \leqslant$ 18.5. 11472 integrated intensities were collected using a $\omega-2 \theta$ scan. with $1.5 \leqslant \theta \leqslant 28^{\circ}$, for one unique volume of reciprocal space (range $h \mathrm{k} /: h-15$ to $15, k 0$ 1018 and $/-19$ to 19). Three standard reflections were monitored after every 3600 s and their intensities showed no significant decay throughout data collection. The data were comected for Lorentz, polarization and absorption effects (transmission factor between 0.5231 and 0.9095 with (AD) software.

4.6. Structure solution and refinement

Diffraction data were consistent with space groups $P 1$ and $P \overline{1}$. The space group P_{1}^{-1} was assumed with base on a centrosymmetric statistical distribution of intensities. This choice was confirmed by subsequent solution and refinement of the structure. The Re and Mo positions were heated by three-dimensional Patterson synthesis. The positions of S, C and O atoms were found from subsequent difference Fourier syntheses. The hydrogen atoms in both complexes were located from difference maps and were introduced into the refinement with (-H distances constrained to 1.00 \AA and refined isotropically with global temperature factors. The weighting scheme $w=1 /\left[\sigma^{2}\left(F_{0}\right)+\right.$ ($\left.\left.0.02 F_{4}\right)^{\prime}\right]$ gave acceptable agreement analyses. Final refinement of 839 parameters converged at $R=0.030$ and $R_{\mathrm{w}}=0.032$ and $S=1.0138$ for 8553 reflections with $F_{6} \geqslant 2 \sigma F_{6}$. Final atomic positions and equivalent isotropic temperature factors for non-hydrogen atoms are listed in Table 5. In the tinal difference Fourier map, no peaks were found that could be attributed to H atoms at $1.5-1.7 \AA$ from the Mo atom.

Statistical tests and Patterson function were calculated with sherxse: [38]. Fourier syntheses and least squares refinements were done with shatxish [39]. The final refinement including the hydrogen atoms was made with upas $[40]$. The illustrations were drawn

TABLE 5. Fractional atomic coordinates ($\times 10^{4}$) and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$ for $\left[\mathrm{Mo}_{2} \mathrm{Fv}\left(\mu-\mathrm{SPh}^{2}\right) \mathrm{Cp}_{2}\right]-$ $\left[\mathrm{Ke}_{2}(\mu-\mathrm{SPh})_{3}(\mathrm{CO})_{6}\right]$

Atom	x	y	z	$U_{\text {eq }}$
Re(1)	825.5(2)	4204.2(1)	3203.0(1)	30.4(1)
$\operatorname{Re}(2)$	$430.5(2)$	1971.6(1)	$2009.2(1)$	32.0 (1)
S(1)	319(1)	3610(1)	1456(1)	34.6(4)
S(2)	-726(1)	2724(1)	2989(1)	31.9(4)
S(3)	2139(1)	2930(1)	3351(1)	35.0(4)
C(1)	1368(5)	1664(4)	1185(4)	46(2)
$\mathrm{O}(1)$	1886(4)	1480(4)	671(4)	$76(2)$
C(2)	-976(5)	1251(4)	1075(4)	43(2)
O(2)	-1776(4)	758(4)	533(3)	$69(2)$
C(3)	673(5)	829(4)	2596(4)	43(2)
O(3)	830(5)	143(3)	2948(4)	$72(2)$
C(4)	-328(5)	5071(4)	2959(4)	43(2)
O(4)	- 1032(4)	5580(3)	2780(4)	$67(2)$
C(5)	1175(5)	4446 (4)	4536(4)	42(2)
$\mathrm{O}(5)$	1436(4)	4585(4)	5350(3)	$66(2)$
C(6)	2161(5)	5197(4)	3288(4)	42(2)
$\mathrm{O}(6)$	2997(4)	5776(3)	3382(4)	71(2)
C(11)	-755(4)	$2329(3)$	4104(3)	31(2)
C(12)	-1191(6)	2894(4)	$4679(5)$	$50(2)$
C(13)	-1311(6)	2612(5)	5524(5)	54(3)
C(14)	-995(5)	1768(4)	5818(4)	$45(2)$
C(15)	-558(6)	1206(4)	5259(4)	50(2)
C(16)	-436(5)	1476(4)	4400(4)	44(2)
C(21)	- 1202(5)	3839(4)	903(4)	$38(2)$
C(22)	-2267(5)	3230(5)	851(4)	49(2)
C(23)	-3397(6)	3482(6)	443(5)	$65(3)$
C(24)	-3478(6)	4341(6)	$78(6)$	$71(3)$
C(25)	-2438(6)	4953(5)	114(5)	$66(3)$
C(26)	- 1298(5)	4698(4)	518(5)	$49(2)$
C(31)	3515(4)	3443(4)	3120(4)	40(2)
C(32)	3567(6)	3663(5)	2234(5)	$56(3)$
C(33)	4671(7)	4093(5)	2124(6)	68(3)
C(34)	5716(6)	$4297(5)$	2882(7)	77(4)
C(35)	5647(6)	4075(6)	3747(8)	87(4)
C(36)	4564(5)	3644(5)	3878(5)	$60(3)$
Mo(1)	4854.5(5)	-245.5(3)	7408.8(3)	$31.2(1)$
Mo(2)	3874.9(4)	1787.6 (3)	$7282.8(3)$	38.9 (2)
S(4)	5754(1)	1309(1)	8266(1)	34.9(4)
C(41)	3380(5)	-976(4)	$7998(5)$	49(2)
C(42)	3903(6)	-1698(4)	$7672(5)$	$56(3)$
C(43)	5159(6)	-1592(4)	8207(5)	$56(3)$
$\mathrm{C}(44)$	5436(5)	810(4)	8882(5)	50(2)
C(45)	4336(5)	-420(4)	8759(4)	41(2)
C(51)	2678(6)	1273(5)	8264(5)	58(3)
C(52)	1971(6)	1652(7)	7514(6)	74(4)
C(53)	2497(10)	2634(8)	$7609(8)$	$97(5)$
C(54)	3566(9)	$2809(6)$	8398(8)	87(4)
C(55)	$3639(6)$	1957(6)	8785(5)	$62(3)$
C(61)	4744(5)	382(4)	6005(4)	44(2)
C(62)	5992(5)	241(5)	6413(4)	$46(2)$
C(63)	6008(6)	-718(5)	6478(5)	52(2)
$\mathrm{C}(64)$	4784(6)	-1212(5)	6101(5)	$55(3)$
C(65)	3990(5)	-550(5)	5835(4)	49(2)
C(71)	4326(5)	1284(4)	5953(4)	42(2)
C(72)	5082(6)	$2183(5)$	6306(4)	$53(2)$
C(73)	4335(7)	2859(5)	6283(5)	$63(3)$
C(74)	3100(6)	2396 (6)	5881(5)	$66(3)$
C(75)	3073(5)	1421(5)	5705(4)	54(2)

TABLE 5 (continued)

Λ tom	x	y	z	U_{eq}
$\mathrm{C}(81)$	$7266(4)$	$1856(4)$	$8312(4)$	$39(2)$
$\mathrm{C}(82)$	$7525(5)$	$2823(4)$	$8289(5)$	$51(2)$
$\mathrm{C}(83)$	$8721(7)$	$3251(5)$	$8409(5)$	$66(3)$
$\mathrm{C}(84)$	$9646(6)$	$2712(6)$	$8567(5)$	$68(3)$
$\mathrm{C}(85)$	$9382(6)$	$1740(6)$	$8588(5)$	$63(3)$
$\mathrm{C}(86)$	$8183(5)$	$1304(5)$	$8463(4)$	$50(2)$

with ortep-il [41]. The atomic scattering factors and anomalous scattering terms were taken from International Tables [42]. Lists of observed and calculated structure factors, tables of anisotropic thermal parameters and tables of hydrogen atomic coordinates are available from the authors.

4.7. Molecular orbital calculations

All the calculations were of the extended Hückel type [13] with modified $H_{i j}$'s [43]. The basis set for the metal atom consisied of $n \mathrm{~s}, n \mathrm{p}$, and ($n-1$) d orbitals. The s and p orbitals were described by single Slater-type wave functions, and the d orbitals were taken as contracted linear combinations of two Slater-type wave functions.

The geometry of $\left[\mathrm{Mo}_{2} \mathrm{Fv}(\mu-\mathrm{LH}) \mathrm{Cp}_{2}\right](\mathrm{L}=\mathrm{S}$ or O$)$ species was modelled with C_{s} symmetry. The L and the two Mo atoms lie in the $x z$ plane, the Mo-Mo axis being the $x x$ direction. All the five-membered rings were considered regular pentagons ($\mathrm{C}-\mathrm{C}=140 \mathrm{pm}$) lying 198 and 195 pm from the Mo atoms, respectively for Cp and Fv . The remaining distances (pm) and angles (deg) were as follows: $\sigma-\mathrm{C}-\mathrm{C}=144.4, \mathrm{C}-\mathrm{H}=$ 108 , Mo-Mo $=326, \mathrm{Mo}-\mathrm{L}=243.5, \mathrm{~L}-\mathrm{H}=135, \mathrm{~S}-\mathrm{C}=$ $181, \mathrm{Cp}-\mathrm{Mo}-\mathrm{Fv}=141$. All the other parameters were described as needed.

Standard parameters were used for $\mathrm{C}, \mathrm{O}, \mathrm{S}, \mathrm{H}$, while those for Mo were as follows $\left(-H_{i i} / \mathrm{eV}, \zeta\right)$: 5 s $8.77,1.96 ; 5$ p $5.60,1.90 ; 4 d 11.06,4.54,0.5899\left(\mathrm{C}_{1}\right)$, $1.90\left(\zeta_{2}\right), 0.5899\left(\mathrm{C}_{2}\right)$. The three-dimensional molecular orbital drawings were made using the program cacao [44].

Acknowledgements

We thank Junta Nacional de Investigação Científica e Tecnológica for financial support (research grant to V. Félix and PMCT/C/CEN/367/90).

References

1 A.R. Dias and M.L.H. Green, J. Chem. Soc. A, (1971) 1951.
2 A.R. Dias and M.L.H. Green, J. Chem. Soc. A, (1971) 2807.
3 P.S. Braterman, V.A. Wilson and K.K. Joshi, J. Chem. Soc. A, (1971) 191.

4 H. Köpi and K.II. Rathlein. Ansen: (hom. hif. Lid. Kngh, \& (1969) 988.

5 T.S. Cameron. C.K. Prout, G.V. Rees. M.L.H. Green. K.K. Joshi, G.R. Davies. B.l: Kilhourn, P.S. Braterman and V.A. Witson. I. (hiom. Soc. Chem. Comman, (1971) 14.
t. G.R. Davies and B.T. Kilboum, I Chem, So. A, (1071) 87 .

7 A.R. Dian and W.H. Gatcia. Rei. Por. O!im. I/ (1979) 145.
\& T.A. Wark and D. W. Stefan. Thors Chim, $20(1987) 36 \mathrm{~m}^{2}$
9 J. (. Kol\% W. Vining. W. (oco. R. Rosen, A.R. D)as and M.H. Garcia, Organometalics, $2(1983)$ ox.
(0) M.J. Cahordat MA.A. de C.T. Camondo. A.R. Dias, A.M.S.S. Domingos. M.T.LS. Duate. M.H Gancia and (C. Romão. 1. Organomet. (hem., 20 (1987) 6.3
11 M.A.A.F. de C.T. Carondo. A.R. Dias, M.lI. Garcia, P. Matias. M.P. Robate M.L.H. Gired. J. Higeme and Y.Y. Yang. l. Oramomet. (inem. 395 (1591) 279.
 S. Gambarotta and M.Y. Chiang. Orqamometallics is (1987) 897. (c) F Gi. Perevalona. I.F. Trazowshi. D.A. Lemermonkii. Yu.L. Slowahotov anf Yul. Struchbov, I. Orgamomet. (hem., so (1985) 314.

13 (a) R. Hoffmam, J. (heta. Phys, se (1903) 1397: (b) R. Hotf mann and W.N. Lipscomb. (I. Chem, Phys. 36 (1962) 2179.
$1 f \mathrm{MA} A$ fo de (T Carrondo and V. Félix. unpubished results.
15 Y . Wielstra, A. Meetsma, S. Gambarota and S. Khan, Orgonemetaflos. 9 (fy90) 870 and refs, therein.
16 N.I. Conper atnd M.I..H Green. I. Cham. Sore, Chem. Commen., (1977) 115.

17 J. Bashkin, M.l.H. Green. M.L. Poveda and K Probt. B (Hem. Soc. Datom Trams. (1982) 2485.
18 (i.L. Gsoffroy and M.S Wriphton, Orgonometaltic Photohemistry. Academic lress. New York, 197.
19 P.M. Trichel and M.H. Tegen, I. Orgatomat. (inom. 3 Sx (198s) 339.

 345.

22 (a) M.J. Cathorda and A.M. Gakato, Bonding and conformations in biscydopentadienythiolate derivatives of early transition metals, in Topic: in Physat organometallic chomiary Vol 4, Freund. Tel Aviv. 1001. p 93. (h) M.B. Gomes de Limb If: Gucrchais. R. Mercier and F.Y. Petillos, Orgmonnemilics. 5 (1986) 1952.
 (11)85) 85

24 J. Benson. S.D. Killops, S.A.R. Knox and A.I. Welch, I. Chem. Sor: Chem Commm (1980) 1137
35 (a) K. Prout and 116 Couldwel fora enstallogr. Sirt RBZ (1977) 2146; di JW Egan Jr. and II. Petersen, Orgemometalies. S (10sn) yot: (0) S.A. Krethanan. M.F. Cass and P.W. Tur

27 F A (otton me D. licko homs (7hme teat o (1472) tol.
 241
20 (a) 1 I. Gugenterger ans F.N. Tebhe. I the (hom. Sow, gs

 $(100) 21+2$
30) I. Bashkin. D. Phit. Thesis. Oxford. UK, 14s?

32 N.J. Preeman. A.G. Opper. N. (i. Connelly 1 Manners and S.I Raven (fhem Sos Dehon frans. (1085) 2283.
 1729

35 D.A. Lemenombii. V.P. Fedin and iu.T. Struchkow. I. Orechomet (hath as (1083) 153
36 (a) MiLH Grewn and P.t. Knowles, A (hem Sor, Perkin Trams.

Ss G.M. Sitedrich. in ©.M. Shedrich. C. Krüger and R. Goddard
 1985.

39 G.A1. Sheluntick shlixat Givathographic Calculation Program. Unversity of Cambidge. 1970 .
(0) B. Lendges. : pais: A Fuh Matmix I case Spares Refinentent Program. Eppsata, Sweden. WVO.
 tonat laboratory. Park Ridge TN. 1976.
 Press. Bimminghum. IK. !oty.
43 3.11. Anmeat, H.-B. Bungi. J.C. Thibeath ind R. Hotmann. f

[^0]: Correspondence to: Dr. M.J. Calhorda.

[^1]: the planes of the rings in the fulvalene ligand

